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The inner product of Weber’s parabolic cylinder function and a Hermite poly-
nomial is defined and evaluated as a new class of definite integrals, from which an
orthogonal series expansion for Weber’s parabolic cylinder function in terms of
Hermite polynomials can then be derived. © 2001 Academic Press

1. INTRODUCTION AND NOTATION

Weber’s parabolic cylinder functions, denoted by the symbol Dn(x),
stood in the theory of classical electromagnetism [3], in as much as
Hermite polynomials, Hn(x), provided evidence of a wave-like solution
(e.g., see Merzbacher [2]) in the quantum theory of electromagnetism.
Moreover, the utility of Weber’s function, Dn(x), in quantum mechanics
and in solid-state studies of anharmonic crystals is well known in the
context of a system of two coupled linear harmonic oscillators (Chapter 5.6
of Merzbacher [2]), implying that anharmonic motion in vibrationally
coupled systems can be better represented by parabolic cylinder functions,
rather than the usual simple-harmonic oscillator basis set, whose solution
sets are well known to be described by Hermite polynomials. Implicit in the
latter statement, however, and also the main impetus for inititiating the
present study, is the evaluation of matrix elements, or definite integrals, of
Weber’s parabolic cylinder functions, which themselves are mathematically
very intricate and involved, so seeking a simpler representation for the
Dn(x)’s becomes instructive.

In particular, the representation which shall be chosen for Dn(x) is an
orthogonal expansion with respect to the basis set of the Hermite polyno-
mials, whose expansion coefficients necessitate an inner product between



the parabolic cylinder function, Dn(x), and the Hermite polynomial, Hn(x),
to be evaluated. Evaluation of such an inner product has some merit in its
own right, because it forms, to the author’s knowledge, a useful as well as a
new class of definite integrals involving the special functions, Dn(x) and
Hn(x).

Let k=Dn(x), with Dn(x) as introduced above to denote Weber’s para-
bolic cylinder function, and denote the Hermite polynomials with respect
to the weight exp(−x2/2) by f=exp(−x2/2) Hn(x). The inner product of
k and f is then defined as the definite integral,

Ok, fP=F
.

−.
exp(− 12 x

2) Hn(x) Dn(x) dx, (1)

where n is any real or complex number and n a nonnegative integer.

2. EVALUATION OF THE INNER PRODUCT

Multiplying the inner product (1) by ;.

n=0 tn/n! and permuting the sum
over the index n through the integral sign, together with the well-known
generating function for Hermite’s polynomial, Hn(x),

exp(2xt−t2)=C
.

n=0

Hn(x) tn

n!
(2)

leads to the following modification of the integrand in Eq. (1):

C
.

n=0

tn

n!
×F

.

−.
exp 1 −1

2
x22Hn(x) Dn(x) dx

=F
.

−.

1 C
.

n=0

Hn(x) tn

n!
2 Dn(x) dx

=F
.

−.
exp 1 −1

2
x2+2xt−t22 Dn(x) dx. (3)

This last integral bears a similarity to a known standard form of integrals
cited by Eq. 2.11.4(7) of Prudnikov et al. [4]:

F
.

−.
exp 5−b(x−y)2+

c2x2

4
6 Dn(cx) dx

=`2p (2b)−(n+1)/2 (2b−c2)n/2 exp 5 bc2y2

2(2b−c2)
6 Dn 1

cy`2b

`2b−c2
2 , (4)
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provided the identification b=3/4, y=4t/3, and c=1 is made, Accord-
ingly, Eq. (3) can be evaluated to give

F
.

−.
exp 1 −1

2
x2+2xt−t22 Dn(x) dx=2`p 3−

(n+1)
2 exp 15

3
t22 Dn 1

4t

`3
2 .
(5)

Clearly, expanding the right hand side of Eq. (5) in powers of tn and
matching its nth-order coefficient with the corresponding nth-order coeffi-
cient on the left hand side of Eq. (3) will lead to the desired result for the
inner product (1).

Starting, then, with the defining relationship between the confluent
hypergeometric function, 1F1(a; c; z), and Weber’s parabolic cylinder
function, Dn(x), (Gradshteyn and Ryhzik [1, p. 1064]),

Dn(z)=2n/2 exp(−z2/4) | C 1122
C 11− n

2
2
1F1 1−

n

2
;
1
2
;
z2

2
2

+
z

`2

C 1−1
2
2

C 1− n
2
2
1F1 1

1− n
2

;
3
2
;
z2

2
2} , (6)

as well as recalling from Rainville [5, p. 23], the Legendre’s duplication
formula,

(a)2n=22n(a)n (a+
1
2)n, (7)

where (a)n is Pochammer’s symbol,

(a)n=
C(a+n)
C(a)

, (8)

C(x) being the gamma function, one ascertains the following power
series expansion in z for each of the confluent hypergeometric functions
contained in Eq. (6):
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2
n

2

C 11
2
2

C 11− n
2
2
1F1 1−

n

2
;
1
2
;
z2

2
2Q C

.

k=0

C 11
2
2 2 n2 −k

C 11− n+2k
2
2
R n
2k
S z2k (9)

2
n

2 z

`2

C 1−1
2
2

C 1− n
2
2
1F1 1

1− n
2

;
3
2
;
z2

2
2Q C

.

k=0

C 11
2
2 2 (n−1)2 −k

C 12− n+2k
2
2
R n
2k+1
S z2k+1, (10)

where the (xy)’s represent binomial coefficients. Inserting this result into the
definition for Weber’s parabolic cylinder function Dn(z), given by Eq. (6),
and noting that the terms on the right hand side of (6) represent an even
and an odd power series, respectively, in z, one finds that Dn(z) can be
rewritten

Dn(z)=exp(−z2/4) C
.

l=0

C 11
2
2 2 (n−l)2

C 11− n+l
2
2
Rn
l
S z l. (11)

This result for Dn(z) can be used on the right hand side of Eq. (5),
together with the exponential term expanded in its usual Taylor series, to
illuminate a power series expansion in the variable t,

2`p

3
(n+1)
2

exp 15
3
t22 Dn 1

4t

`3
2

=
2`p

3
(n+1)
2

exp 11
3
t22 C

.

l=0

C 11
2
2 2 (n−l)2

C 11− n+l
2
2
Rn
l
S 1 4t
`3
2 l

=
2`p

3
(n+1)
2

C
.

n=0

t2n

3n n!
C
.

l=0

C 11
2
2 2 (n−l)2

C 11− n+l
2
2
Rn
l
S 1 4t
`3
2 l

=
2`p

3
(n+1)
2

C
.

n=0
C
.

l=0

1 4t
`3
2 l

2
(n−l)
2 C 11

2
2

3nn!C 11− n+l
2
2
Rn
l
S t2n+l . (12)
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By simply shifting the index m above to m=2n+l, and noting that
[m/2] \ l \ 0, where [] is the greatest integer symbol, one can sort out the
series (12) further into ascending powers of t,

2`p

3
(n+1)
2

C
.

m=0

tm

m!
1 4
`3
2m C

[
m
2
]

n=0

R n
m−2n
S

m!C 11
2
2 2−4n

n!C 1m−2n− n+l
2
2
, (13)

if for no apparent reason than to make a more direct comparison of the
nth-order coefficient to tn between Eqs. (3) and (13).

The required nth-order coefficient can be procured straight away from
Eq. (13), so finally, the result for the inner product reads

Ok, fP=F
.

−.
exp 1−1

2
x22Hn(x) Dn(x) dx

=
22n+1`p

3
(n+n+1)
2

C
[n2]

k=0

R n
n−2k
S

n!C 11
2
2 2−4k

k!C 1n−2k− n+1
2
2
. (14)

3. ORTHOGONAL SERIES EXPANSION FOR Dn(x)

To throw a different light on the result given by Eq. (14), consider
expressing the binomial coefficients in (14) in terms of Pochammer’s
symbols, of course using Legendre duplication formula in Eq. (7) whenever
the need arises. Eq. (14), then, becomes

Ok, fP=
22n+1`p

3
(n+n+1)
2

C(n+1) C(n+1) C 11
2
2

C(n−n+1) C 1n− n+l
2
2

C
[n2]

k=0

1 −n
2
2
k

11−n
2
2
k

1n−n+2
2
2
k

(−1)n

24n

=
22n+1`p

3
(n+n+1)
2

C(n+1) C(n+1) C 11
2
2

C(n−n+1) C 1n− n+l
2
2

× 2F1 1
−n
2

,
1−n
2

;
n−n+2

2
; −

1
24
2 , (15)

160 DEREK J. DANIEL



where the hypergeometric function, 2F1(a, b; c; x), has been forced to reveal
itself for the first time.

Assume now that Weber’s parabolic cylinder function has an available
orthogonal expansion, namely,

Dn(x)=exp(−x2/2) C
.

k=0
bkHk(x), (16)

where the coefficients, bk, can be determined by multiplying (16)
throughout by exp(−x2/2) Hm(x) and integrating over the variable x, with
the orthogonality relation for Hermite’s polynomial applied, to give:

2nn!`p bn=F
.

−.
exp(−x2/2) Hn(x) Dn(x) dx. (17)

But the integral here is just the inner product determined by Eq. (15),
thereby relating the coefficients bn with the hypergeometric function
contained in Eq. (15) in the obvious way,

bn=
2 (n+1)

3
(n+n+1)
2

C(n+1) C(n+1) C 11
2
2

C(n−n+1) C 1n− n+l
2
2
2F1 1

−n
2

,
1−n
2

;
n−n+2

2
; −

1
24
2 .
(18)

Inserting this expression for the bn’s into Eq. (15) leads to the desired result,

Dn(x)=3−
(n+1)
2 C(n+1) exp(−x2/2) C

.

n=0

2 (n+1)

3
(n)
2

C 11
2
2Hn(x)

C(n−n+l) C 1n− n+l
2
2

× 2F1 1
−n
2

,
1−n
2

;
n−n+2

2
; −

1
24
2 , (19)

for the orthogonal series expansion of Dn(x).

4. SUMMARY

The main contribution in the present article is the evaluation of a class of
integrals of the type

Ok, fP=F
.

−.
exp(− 12 x

2) Hn(x) Dn(x) dx, (20)
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which defines an inner product between Weber’s parabolic cylinder func-
tions and the Hermite polynomials. As shown in Eq. (15), Ok, fP can be
evaluated in terms of the hypergeometric function 2F1:

Ok, fP=
`p 22n+1

3
(n+n+1)
2

C(n+1) C(n+1) C 11
2
2

C(n−n+1) C 1n− n+l
2
2

× 2F1 1
−n
2

,
1−n
2

;
n−n+2

2
; −

1
24
2 , (21)

from which it followed that Weber’s parabolic cylinder function, Dn(x), can
be expressed as an orthogonal series expansion in terms of the Hermite
polynomials, Hn(x), that is,

Dn(x)=3
−(n+1)
2 C(n+1) exp 1−1

2
x22 C

.

n=0

2 (n+1)

3
(n)
2

C 11
2
2Hn(x)

C(n−n+l) C 1n− n+l
2
2

× 2F1 1
−n
2

,
1−n
2

;
n−n+2

2
; −

1
24
2 . (22)

As pointed out in the Introduction, if future developments along the
lines of solving nonlinear oscillator problems in quantum mechanics, using
Weber’s parabolic cylinder function as an alternative basis set, is to
proceed, then the second result displayed directly above, not only provides
an alternative generating function for Hermite polynomials, but also sits
with a greater chance of evaluating definite integrals involving products of
two or more Dn(x)’s. This is because orthogonality relations and similar
properties associated with Hermite polynomials are well known and
simpler to evaluate than the direct definition of Weber’s parabolic cylinder
function given by Gradshteyn and Ryzhik [1, p. 1064], which one can see
has an awkard relation with the confluent hypergeometric function (see
also Eq. (10) of the text).

REFERENCES

1. I. S. Gradshteyn and I. M. Ryzhik, ‘‘Table of Integrals, Series, and Products,’’ Academic
Press, New York, 1980.

2. E. Merzbacher, ‘‘Quantum Mechanics,’’ Wiley, New York, 1970.

162 DEREK J. DANIEL



3. P. M. Morse and H. Feshbach, ‘‘Methods of Theoretical Physics II,’’ pp. 1398–1407,
McGraw–Hill, New York, 1953.

4. A. P. Prudnikov, Yu. A. Brychkov, and D. I. Marichev, ‘‘Integrals and Series,’’ Gordon
& Breach, New York, 1990.

5. E. D. Rainville, ‘‘Special Functions,’’ The Macmillan Company, New York, 1960.

Printed in Belgium

WEBER’S FUNCTION AND HERMITE POLYNOMIALS 163


	1. INTRODUCTION AND NOTATION
	2. EVALUATION OF THE INNER PRODUCT
	3. ORTHOGONAL SERIES EXPANSION FOR ...
	4. SUMMARY
	REFERENCES

